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Abstract
In this paper we show that the complex Burgers and the Kundu–Eckhaus
equations are related by a Miura transformation. We use this relation to
discretize the Kundu–Eckhaus equation.

PACS numbers: 02.30.Jr, 02.30.Kr, 02.30.Ik

1. Introduction

The Burgers equation is the simplest partial differential equation that combines nonlinear wave
propagation with diffusive effects. As such, it has been widely applied to the modelling of
physical processes such as sedimentation, shock propagation in gaseous flow, turbulence in
fluids and road traffic [4, 13]. The name of the Burgers equation was introduced by Hopf as a
reference to the results of Burgers [4], but, in fact, the Burgers equation can be found already
in a work by Bateman published in 1915 [3]. An explicit solution of the Cauchy problem on
the infinite line for the Burgers equation may be obtained by linearizing Hopf–Cole transform,
introduced independently by Hopf and Cole in 1950 [6, 11]. This transformation is already
contained in an article by Florin [8] published in 1948 and implicitly in a book by Forsyth [9]
published in 1906.

Kundu [12] and Eckhaus [5, 7] independently derived in 1984–1985 what can now
be called the Kundu–Eckhaus equation as a linearizable form of the nonlinear Schrödinger
equation.

Here in the following we show that the Kundu–Eckhaus equation can be related to the
complex Burgers equation by a Miura transformation. Then taking into account this relation
we are able to discretize the Kundu–Eckhaus equation using the discretization procedure
introduced for the Burgers equation.

In section 2 we present the linearization procedure for both the Burgers and the Kundu–
Eckhaus equations and use it to derive the Miura transformation which relates them. Then in
section 3 we use the standard discretization via Bäcklund transformation, used to construct
the discrete Burgers equation, to discretize the Kundu–Eckhaus equation.
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2. The complex Burgers equation and the Kundu–Eckhaus equation

Let us consider a complex extension of the Burgers:

iut + uxx + 2uux = 0 (1)

where u(x, t) is a complex field. Equation (1), introducing the standard Hopf–Cole
transformation

u(x, t) = φx

φ
, (2)

reduces to the time-dependent free Schrödinger equation

iφt + φxx = 0, (3)

provided that the time evolution of the function φ(x, t) satisfies the linear ordinary differential
equation

φt = i(ux + u2)φ|x=a, (4)

where a is an arbitrary value of the x variable at which all the functions involved are well
defined. The solution of equation (4) gives

φ(a, t) = φ(a, b) ei
∫ t

b
(ux+u2)|x=adt ′ , (5)

where b is an arbitrary value of the t variable at which all the functions involved are well
defined. Consequently, as is well known, the inverse of the Hopf–Cole transformation (2)
reads

φ(x, t) = φ(a, t) e
∫ x

a
udx ′

. (6)

From equation (1) we derive that an asymptotically bounded solution will be such that
limx→∞ u(x, t) = u(−∞, t) = u0, where u0 is a finite constant. In this case the above
formula can be replaced by

φ(x, t) = α(t) eu0x e
∫ x

−∞(u−u0)dx ′
, (7)

where α(t) is a t-dependent function. The function (7) will satisfy the linear Schrödinger
equation (3) if

α(t) = α0 eiu0
2t , (8)

where α0 is a constant. When u0 = 0, α0 equals the asymptotic value of φ(x, t).
A less known linearizable (or C-integrable) equation is the Kundu–Eckhaus equation

iψt + ψxx + 2ψ |ψ |2x + ψ |ψ |4 = 0. (9)

This is a nonlinear Schrödinger-type equation that also linearizes to the free linear Schrödinger
equation (3). As the well-known nonlinear Schrödinger equation, it is a universal model
equation and, as such, it appears in many applications. For example, it has been obtained
in the study of the instabilities of plane solitons associated with the Kadomtsev–Petviashvili
equation [10].

The Kundu–Eckhaus equation linearizes to the time-dependent free Schrödinger
equation (3) through the following procedure. Let us define the complex function

φ =
√

2�ψ, (10)
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where the real function � is related to φ by the following overdetermined system of equations

�x = |φ|2, (11a)

�t = i[φ̄φx − φφ̄x], (11b)

where by a bar we indicate the complex conjugate. The Kundu–Eckhaus equation (9) is
obtained by inserting equation (10) into equation (3) and taking into account equations (11).
The compatibility of equations (11) is identically satisfied on the solutions of equation (3).
Solving equations (11), we get

� =
∫ x

a

|φ|2 dx ′ +
1

2
ρ(t), (12)

ρ(t) = 2i
∫ t

b

(φ̄φx − φφ̄x)|x=a dt ′ + ρ0, (13)

where ρ0 is an arbitrary real constant. Then equation (10) can be written as

ψ = φ[
2
∫ x

a
|φ|2 dx ′ + ρ(t)

]1/2 . (14)

Equations (13) and (14) can be inverted giving

φ =
√

ρ(t) e
∫ x

a
|ψ |2dx ′

ψ, (15a)

ρ(t) = ρ0 e2i
∫ t

b (ψ̄ψx−ψψ̄x)|x=adt ′ . (15b)

We see that, if we set the lower extremum of integrations a = −∞, both φ and ψ must go
to zero as x → −∞. Let us point out that we must have ρ(t)/ρ0 � 0 as one can deduce
from equation (15b). Moreover, as a direct consequence of equation (10) we get the following
relation between φ and ψ :

φψ̄ = φ̄ψ. (16)

By differentiating equation (10) with respect to x and using equations (11a), (16), we get the
following differential equation relating φ and ψ :

φx =
(

ψx

ψ
+ |ψ |2

)
φ. (17)

By comparing equations (2), (17) we obtain a Miura transformation between the function ψ

and the function u satisfying the complex Burgers equation (1):

u = ψx

ψ
+ |ψ |2. (18)

The inversion of equation (18) is obtained by combining equations (5), (6) and (14). It reads

ψ = A(t) e
∫ x

a
udx ′

[
2|A(t)|2 ∫ x

a
e
∫ x′(u+ū)dx′′
a dx ′ + ρ(t)/ρ0

]1/2
, (19a)

ρ(t) = 2iρ0

∫ t

b

|A(t)|2(u − ū)

∣∣∣
x=a

dt ′ + ρ0, (19b)

A(t) = ψ(a, b) ei
∫ t

b
(ux+u2)|x=a dt ′ , (19c)
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where ψ(a, b) = φ(a, b)
/
ρ

1/2
0 . Naturally the Kundu–Eckhaus equation can also be obtained

by introducing the Miura transformation (18) into the complex Burgers equation (1), fixing
ψ(a, t) in such a way that it is consistent with equation (19).

A solution of the Kundu–Eckhaus equation is given by equation (14) in terms of a
solution of the Schrödinger equation (3). Equation (18) gives the solution of the complex
Burgers equation in terms of the solution of the Kundu–Eckhaus equation. Equation (19)
provides the solution of the Kundu–Eckhaus equation in terms of the solutions of the complex
Burgers equation. So, by solving the linear Schrödinger equation (3) we can get solutions of
both the complex Burgers and Kundu–Eckhaus equations.

This constructive procedure to get the Kundu–Eckhaus equation can be discretized and
provide the differential difference and difference difference Kundu–Eckhaus equation.

3. Discretizations

Equation (10) is a functional relation and, as such, it is valid when all involved fields, �, φ

and ψ , depend not only on continuous variables but also on discrete variables. Similarly, as
a consequence, the same is true for equation (16). What will change when discretizing is
the linear equation (3), the overdetermined linear system for � and the resulting Burgers and
Kundu–Eckhaus equations.

Let us start from the differential difference case when we just discretize the space variable
x. In this case we assume as a free linear Schrödinger equation the differential difference
equation

iφ̇n +
φn+1 + φn−1 − 2φn

h2
= 0, (20)

where h is the lattice spacing and n is the lattice index such that x = nh. The general solution
of the previous equation is obtained by using the Z-transform and reads

φn(t) = 1

2iπ

∮
C

φ̃(z) e
i

h2 (z+1/z−2)t
zn−1 dz, (21)

φ̃(z) =
+∞∑

n=−∞
φn(0)z−n, (22)

where C is a counterclockwise circle in the complex z-plane, centred in z = 0 and encircling
all the poles of φ̃(z). This representation of the solution is only valid for z inside the region
of convergence of the series in equation (22) (and C must obviously be contained inside this
region). By compatibility of equation (20) with the discrete Hopf–Cole transformation

φn+1 − φn

h
= unφn, (23)

we get the discrete complex Burgers

iu̇n +
un+1 − 2un + un−1

h2
+

1

h

[
un(un+1 − un) +

un−1(un − un−1)

(1 + hun−1)

]
= 0. (24)

The inverse of the discrete Hopf–Cole transformation (23) reads

φn = φa

j=n−1∏
j=a

(1 + huj ), n � a + 1, (25a)
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φn = φa∏j=a−1
j=n (1 + huj )

, n � a − 1, (25b)

where φa = φa(t) is the function φn calculated at the arbitrary point n = a. For any bounded
asymptotically solution of equation (24) limn→−∞ un(t) = u0, a finite constant. In this case,
the above formulae can be replaced by

φn = α(t) (1 + hu0)
n

γ=n−1∏
γ=−∞

(
1 + huγ

1 + hu−∞

)
, (26)

where α(t) is a t-dependent function. When un(t) satisfies the complex Burgers
equation (24), φn, given by equation (25), will satisfy the discrete linear Schrödinger
equation (20) if φn(t) satisfies the ordinary differential equation

iφ̇n +
1

h2

[
hun − 1 +

1

(1 + hun−1)

]
φn

∣∣∣∣
n=a

= 0. (27)

The solution of equation (27) is

φa(t) = φa(b) e
i

h2

∫ t

b
[hun−1+ 1

(1+hun−1)
]|n=adt ′

, (28)

where b is an arbitrary value of the time variable. Otherwise, if the solution is given by formula
(26),

α(t) = α0 ei
u2

0 t

1+hu0 , (29)

where α0 is an arbitrary constant that, when u0 = 0, equals limn→−∞ φn(t).
To construct the differential difference Kundu–Eckhaus equation we replace the

overdetermined system of equations for �(x, t) by a system for �n(t), whose compatibility
is satisfied on the solutions of the differential difference linear Schrödinger equation (27). We
get

�n+1 − �n = h|φn|2, (30a)

�̇n = i

h
(φ̄n−1φn − φ̄nφn−1). (30b)

Solving equations (30), we get that equation (10) becomes

ψn = φn[
2h

∑j=n−1
j=a |φj |2 + ρ(t)

]1/2 , n � a + 1, (31a)

ψa = φa√
ρ(t)

, (31b)

ψn = φn[−2h
∑j=a−1

j=n |φj |2 + ρ(t)
]1/2 , n � a − 1, (31c)

ρ(t) = 2i

h

∫ t

b

(φ̄n−1φn − φ̄nφn−1)
∣∣
n=a

dt ′ + ρ0, (31d)

where ρ0 is an arbitrary real constant. Equations (31) can be inverted giving

φn = ψn

√
ρ(t)

j=n−1∏
j=a

(1 + 2h|ψj |2)1/2, n � a + 1, (32a)
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φa = ψa

√
ρ(t), (32b)

φn = ψn

√
ρ(t)∏j=a−1

j=n (1 + 2h|ψj |2)1/2
, n � a − 1, (32c)

ρ(t) = ρ0 e
2i
h

∫ t

b

(ψ̄n−1ψn−ψ̄nψn−1)

(1+2h|ψn−1 |2)1/2 |n=adt ′
. (32d)

If a = −∞, both φ and ψ must go to zero as n → −∞. From equation (10), taking into
account equations (16), (30a) we get

φn+1 =
(

ψn+1

ψn

√
1 + 2h|ψn|2

)
φn. (33)

By comparing equations (23) and (33) we get

un = ψn+1

√
1 + 2h|ψn|2 − ψn

hψn

, (34)

that is the discrete Miura transformation between the function ψn(t) and the function un(t)

satisfying the complex differential difference Burgers equation (24). The inversion of
equation (34) is obtained considering equations (3), (28), (31), and is given by

ψn = A(t)
∏j=n−1

j=a (1 + huj )[
2h|A(t)|2 ∑j=n−1

j=a

∏k=j−1
k=a |1 + huk|2 + ρ(t)/ρ0

]1/2 , (35a)

ψa = A(t)√
ρ(t)/ρ0

, (35b)

ψn = A(t)
/∏j=a−1

j=n (1 + huj )[−2h|A(t)|2 ∑j=a−1
j=n 1

/ ∏k=a−1
k=j |1 + huk|2 + ρ(t)/ρ0

]1/2 , (35c)

ρ(t) = 2iρ0

∫ t

b

∣∣∣∣ A(t)

1 + hun−1

∣∣∣∣
2

(un−1 − ūn−1)

∣∣∣∣
n=a

dt ′ + ρ0, (35d)

A(t) = ψa(b) e
i

h2

∫ t

b

[
hun−1+ 1

(1+hun−1)

]∣∣∣
n=a

dt ′
, (35e)

where ψa(b) = φa(b)
/
ρ

1/2
0 . Equation (35a) is valid for n � a + 1 while equation (35c) for

n � a +1. If one substitutes equation (34) into the complex Burgers equation (24) fixing ψa(t)

in a consistent way with equation (35), we get the following differential difference equation
for the function ψn(t):

iψ̇n +
1

h2

[
ψn+1

√
1 + 2h|ψn|2 +

ψn−1√
1 + 2h|ψn−1|2

− 2ψn

]

− 1

h

ψn√
1 + 2h|ψn−1|2

[ψnψ̄n−1 − ψ̄nψn−1] = 0, (36)

the differential difference Kundu–Eckhaus equation. Equation (36) can also be obtained by
inserting equation (10) into equation (20) and taking into account equation (30). Carrying out
the continuous limit, when h → 0 and n → ∞ in such a way that x = nh remains finite, we
obtain the Kundu–Eckhaus equation (9). Equation (31) provides solutions of the differential
difference Kundu–Eckhaus equation in terms of the solutions of the differential difference
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linear Schrödinger equation. We can solve the discrete linear Schrödinger equation (20) by
separation of variables and we get, for example,

φn(t) = βκn e
i

h2 (κ+1/κ−2)t
, (37)

where β and κ are arbitrary constants, β complex and κ real with |κ| < 1. Then, by
equation (31a) with a = −∞, we obtain the following solution of the differential difference
Kundu–Eckhaus equation (36):

ψn(t) = κn e
i

h2 (κ+1/κ−2)t+iϕβ

/ [
2h

k2n

k2 − 1
+

ρ0

|β|2
]1/2

, (38)

where ϕβ is the phase of β. To be able to perform the continuous limit we must replace κ with
κh. In this way, by performing the limit h → 0, equation (37) provides a solution of the linear
Schrödinger equation (3) and equation (38) a solution of the Kundu–Eckhaus equation (9):

φ(x, t) = βκx+it ln κ , (39)

ψ(x, t) = κx+it ln κ+iϕβ

/ [
κ2x

ln κ
+

ρ0

|β|2
]1/2

. (40)

The completely discrete equation is obtained by discretizing also the time variable. This is
done by introducing a new index m and its spacing τ such that t = mτ . In this case, if we want
to preserve the linearity of the Lax pair, we have to introduce the following overdetermined
system of equations for the real function �n,m:

�n+1,m − �n,m = h|φn,m|2,
�n,m+1 − �n,m = iτ

h
(φn,mφ̄n−1,m − φ̄n,mφn−1,m) + τσn,m.

(41)

where σn,m is a real function which goes to zero when τ → 0. The compatibility conditions
of equation (41) provide the discrete Schödinger equation

i

τ
(φn,m+1 − φn,m) +

1

h2
(φn+1,m + φn−1,m − 2φn,m) = 0, (42)

if the real function σn,m satisfies the following difference equation:

σn+1,m − σn,m = τ

h2
|φn+1,m + φn−1,m − 2φn,m|2 (43)

with the boundary condition σa,m = 0. From equations (10) and (41) we get the following n
and m evolution of the function φn,m:

φn+1,m =
[
ψn+1,m

ψn,m

√
1 + 2h|ψn,m|2

]
φn,m,

φn,m+1 =
[

ψn,m+1

ψn,m

√
1 + 2i

τ

h2

ψn,mψ̄n−1,m − ψn−1,mψ̄n,m√
1 + 2h|ψn−1,m|2 + τρn,m

]
φn,m,

(44)

where ρn,m = σn,m

�n,m
, taking into account the definition of the function σn,m given by

equation (43), satisfies the first-order linear difference equation

ρn+1,m − 1

1 + 2h|ψn,m|2 ρn,m = 2τ

h3[1 + 2h|ψn,m|2]

∣∣∣∣ψn+1,m

√
1 + 2h|ψn,m|2

+
ψn−1,m√

1 + 2h|ψn−1,m|2 − 2ψn,m

∣∣∣∣
2 ]

. (45)
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Introducing the two relations (44) into the discrete heat equation (42) we get the following
nonlinear discrete partial difference equation:

i

[
ψn,m+1

√
1 + 2i

τ

h2

ψn,mψ̄n−1,m − ψn−1,mψ̄n,m√
1 + 2h|ψn−1,m|2 + τρn,m − ψn,m

]

+
τ

h2

[
ψn+1,m

√
1 + 2h|ψn,m|2 +

ψn−1,m√
1 + 2h|ψn−1,m|2 − 2ψn,m

]
= 0, (46)

the difference difference Kundu–Eckhaus equation. It is easy to see that in the continuous limit
equation (46) goes into the Kundu–Eckhaus equation (9) independently from the continuous
limit of the function ρn,m. Equation (45) reduces in the same limit to the linear equation
ρx = −2|ψ |2ρ + 2|ψ |10. Moreover, it is worthy to note that this completely discrete Kundu–
Eckhaus equation, as it is for the well-known nonlinear Schrödinger equation written down
by Ablowitz and Ladik [2], is nonlocal and it involves the function ψn,m at all points of the
lattice.
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